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Prevalence & Cause of OA



What is Osteoarthritis

[1]



What is Osteoarthritis

[2]



What is Osteoarthritis 
Osteoarthritis occurs when the cartilage that cushions the ends of bones
in your joints gradually deteriorates. [3, 4]

→ Degenerative disease that worsens over time, resulting in chronic pain

[5] [6]



Prevalence of Osteoarthritis 

Increment of prevalence of Osteoarthritis along with ageing population

[7]



Prevalence of Osteoarthritis 

According to WHO [8], 

528 million people 
worldwide are 
suffering from 
osteoarthritis.

An increase of 113%, 
compared to 1990

[9]



Lubrication 
deteriorate 
because of 
age/wearing 
out/trauma

Tissue damage
Phenotypic 

destabilisation of 
chondrocytes

Hypertrophy

Osteoarthritis Progression

● Joint articulation is facilitated by cartilage lubrication

MMP 
production

ECM 
degradation

Cartilage 
thinning

Osteoarthritis
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Problem Focus & Gap in Current Technologies



Problem Focus

Lubrication 
Dysfunction

Lubricate joints 
to alleviate 
symptoms

Chondrocyte 
hypertrophy in OA

Stabilise 
phenotype to 

slow OA 
progression

Cartilage thinning 
in OA

Stop ECM 
degradation to 
protect against 
further damage

Slow cartilage 
regeneration

Exert long-term 
therapeutic effect to 
allow natural healing



Requirements

1. Mechanical strength: Can mimic natural cartilage

2. Bio-functionality: Able to integrate with tissue

3. Wear resistance: Able to withstand loads

4. Long term: Can provide long-term therapeutic 
effects



Current Technologies

APPROACH Functionality Strength
Wear 

resistance
Long-term 

effectiveness
Solubility

NSAIDs Pain Relief

Hyaluronic Acid
Regeneration 
Enhancement

tBNPs-MTX
Targeting 
Synovium

Total joint replacement
Replacement 

Surgery
N/A

Proposed Solution
Minimally 

Invasive Surgery
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Solution Description



Proposed Solution

Joint Lubrication

HPX polymer

Phenotype 
stabilisation

HIF-1α & PHD 
inhibitor

ECM protection

MMP inhibitor

Long-term 
therapeutic effects

Choice of therapeutic 
agents



HIF-1α & PHI
HIF-1α for phenotype 

stabilisation &
PHI for prolonging HIF-1α

[18, 19]

Chitosan 
nanoparticles

Integrate medicine with 
hydrogel &

Responsive drug release

HPX/PVA 
hydrogel
HPX for lubrication &
PVA for biocompatibility

Compound 
24f
Inhibits MMP for ECM 
protection against 
degradation [25]

Proposed Solution



Proposed Solution

Joint Lubrication

HPX polymer



HPX is a combination of HA/PA and HA/PM 
(hyaluronan-backbone polymer) [10]

HA/PA is lubricin-like
HA/PM is lipid-like

Joint Lubrication

Joint lubrication[11]

[10]



HPX/PVA (A5M1)

• 5% HA/PA
• 1% HA/PM
• 94% PVA

Joint Lubrication

Joint lubrication

[11]

[11]



A5M1 (HPX/PVA)

Joint lubrication

A5M1 (HPX/PVA) vs PVA

• -30% friction (mimic synovial fluid) [11]
• +12% compressive modulus (mimic cartilage)[11]
• -70% wear [11]
• High post-load recovery [11]
• HPX can bind with collagen for stability [12, 13]



• Decrease tissue damage from rubbing

• Prevent further chondral debris formation

• Decrease pain and inflammation

Joint Lubrication

Joint lubrication



Proposed Solution

Phenotype 
stabilisation

HIF-1α & PHD 
inhibitor



HIF-1α

• Regulate chondrocyte 
growth cycle & 
homeostasis [14]

• Suppress chondrocyte 
hypertrophy [15]

Phenotype Stabilisation

Phenotype stabilisation



Phenotype Stabilisation

HIF-1α underproduction

• Apoptosis [16]
• Mitochondrial 

dysfunction

• Chondrocyte 
hypertrophy [15]

• OA progression

Phenotype stabilisation



HIF-1α

• Regulate chondrocyte 
growth cycle & 
homeostasis [14]

• Suppress chondrocyte 
hypertrophy [15]

Phenotype Stabilisation

HIF-1α underproduction

• Apoptosis [16]
• Mitochondrial 

dysfunction

• Chondrocyte 
hypertrophy [15]

• OA progression

Phenotype stabilisation



• Rapidly degraded by prolyl hydroxylase (PHD)
• 5-10 mins half-life [17]

↓

HIF-1α

Phenotype stabilisation

• Add 1,4-DPCA (PHD inhibitor) to stabilise HIF-
1α & prolong natural HIF-1α [18, 19]

• Encapsulated in chitosan nanoparticles



Chitosan Nanoparticles

Responsive

• Shield HIF-1α from PHD [20]

• Overcome hydrophobicity of 1,4-DPCA

• Control ratio of drugs by bundling

• Hydrolyse when OA progresses (acidic condition) 
[21, 22]

HIF-1α

Chitosan Nanoparticles



NP-Hydrogel Interaction

Responsive

• Chitosan nanoparticles can covalently crosslink 
with sulphate groups in HA/PA [23]

→ HPX/PVA doped with NP can be injected to joints

HPX/PVA doped with NP



Proposed Solution

ECM protection

MMP inhibitor



Cartilage Protection

Protection

MMPs (Matrix metalloproteinases)
• MMP-13 is the major MMP in OA [24]

• Released by hypertrophic chondrocyte

• Degrade ECM & Cause cartilage thinning [24]

↓

• Add 24f (MMP inhibitor) to protect cartilage



Compound 24f

• Competitive inhibitor of MMP-13 [25]
• Also effective against MMP-3, -9, -14
• Does not affect MMP-1 and TACE (TNF-α 

converting enzyme)

• Very low dissociation constant [25]
→ Pseudo-irreversible
→ Effective at lower concentrations
→ Longer duration of action

→ Can allow slow natural regeneration
Protection



Proposed Solution Recap

HIF-1α & PHI
HIF-1α for phenotype 

stabilisation &
PHI for prolonging HIF-1α

[18, 19]

Chitosan 
nanoparticles

Integrate medicine with 
hydrogel &

Responsive drug release

HPX/PVA 
hydrogel
HPX for lubrication &
PVA for biocompatibility

Compound 
24f
Inhibits MMP for ECM 
protection against 
degradation [25]



Proposed Solution

Long-term 
therapeutic effects

Choice of therapeutic 
agents



Proposed Solution

HPX/PVA
-70% wear vs pure PVA

Mechanical strength

High post-load recovery

Stops further damage

Chitosan NPs
Hydrolyse more in low pH [21]
→ Responsive to OA severity 

Regeneration
HIF-1α & 24f facilitate and 
encourage natural healing [14]

24f
Stop further cartilage damage [25]

Long duration of action
→ Allow natural healing

Long term
• OA is chronic
• Cartilage healing is 

slow
• Improve QoL



Innovation

4.1

Novelty



Novelty

• Incorporation of chitosan NPs into HPX/PVA 

• Gradual hydrolysis of NP and release of drugs

• Combination of methods into a feasible system to 
maximise the therapeutic effectiveness



Significance

4.2

Advantages over Current Technologies



Mechanical 
Properties

Long-term 
Effectiveness

Bundling

C
u
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n
t 

T
e

ch
n
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lo

g
y PVA hydrogels

• Poor mechanical strength 
& friction coefficient [11]

• Low wear resistance [11]

HIF-1α
(hypoxia-inducible factor 1-α)

• 5-10 mins half-life [17]

• Not suitable for long-term 
therapy

1,4-DPCA

• PHD inhibitor [19]

• Hydrophobic; cannot 
easily integrate into 
hydrogel

P
ro

p
o

se
d

 
S

o
lu

tio
n

A5M1
(5% HA/PA, 1% HA/PM)

• -70% wear [11]
• -30% friction [11]
• +12% compressive 

modulus [11]

Chitosan NP encapsulation

• Extended half-life [20]

• Responsive to OA 
progression by acidic 
hydrolysis [21]

Chitosan NP encapsulation

• Overcome hydrophobicity

• Controllable ratio 
between 1,4-DPCA & HIF-
1α

Current Tech vs Proposed Solution



Drawbacks

4.3

Work to be Done



Drawbacks

• HIF-1⍺ is not only an inhibitor for OA, but also 

foster OA development if it is high concentration 

→ The dose need to be controlled delicately [26, 27]

• NPs may cause cytotoxicity and side effects to 
unintended tissues and organs [28]

→ The particle size need to be controlled delicately



Conclusion

5

Overall Recap



Conclusion

To tackle the the widely prevalent osteoarthritis, we incorporated 
chitosan NPs into HPX/PVA

To provide patients with OA a 
new type of material able to:

• Administer drugs (HIF-1α) 
gradually 

• Maximise the therapeutic 
effects of the drug

• Resist wear better than 
PVA hydrogels
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